Best Local Approximations in $L^{\rho}(\mu)$

V. B. Headley and R. A. Kerman
Deparment of Mathematics, Brock Lineersity, St. Catharmes. Ontario. LES 3A1. Canado
Communicated by Charles K. Chui
Received March 24, 1986; revised October 20, 1988

I. Introduction

The purpose of this note is to generalize a recent result of Macias and Zó in [4] concerning weighted best local L^{p} approximation. Results of this type have their origin in the work of Freud [3] and Maehly and Witzgall [5].

We consider a positive Borel measure, μ, on the unit ball, B, in $R^{\prime \prime}$, with $\mu(B)=1$. This measure is required to be nondegenerate in the sense that it is not supported in the zero set of a nontrivial polynomial and that $\mu(\varepsilon B)>0$ for all ε in $(0,1]$ where $\varepsilon E:=\left\{y \in R^{n}: y=\varepsilon x, x \in E\right\}$. The dilates of μ are the measures, $\mu_{i}, 0<\varepsilon \leqslant 1$, given at the Borel set $E \subset B$ by $\mu_{;}(E)=$ $\mu(\varepsilon E) / \mu(\varepsilon B)$.

As usual, $I^{P}(\mu), 1<p<\infty$, is the class of all measurable functions, f, on B such that $\|f\|_{D, \mu}:=\left[\int_{B}|f(x)|^{p} d \mu\right]^{1 / p}<\infty$. Given $f \in L^{f}(\mu)$, we denote by $P_{m, \mu} f$ the unique element of π_{m}, the class of real polynomials of degree at most m, satisfying $\left\|f-p_{m, \mu} f\right\|_{p, \mu}=\inf _{p \in \pi_{m}}\|f-P\|_{p, \mu}$. Restricting attention to a special class of measures $d \mu=w(|x|) d x$ (see Example 2.4(1), below), Macias and Zó studied the limiting behaviour, as $\varepsilon \rightarrow 0+$, of

$$
\left(E_{c} f\right)(t):=\varepsilon \quad^{m} \quad\left[f(c t)-\left(P_{m, h} f(c \cdot)\right)(c t)\right], \quad|t| \leqslant 1,
$$

when f belongs to a certain subspace of $L^{p}(\mu)$. We observe that $\left(P_{m, \mu} f(\varepsilon \cdot)\right)(t)=P_{m}(\varepsilon t)$, where P_{m} is the best approximation out of π_{m} to f in L^{p} with respect to the measure $\mu(\cdot) / \mu(\varepsilon B)$ on B. Our main result, Theorem 2.3 , shows $E_{\varepsilon} f$ behaves the same way for a much larger class of μ. The key to proving this is in finding a substitute for the weight \dot{w} associated with the given weight w in [4], as well as for the important Lemma 1 concerning it. This is found in the measure v associated with the given measure μ, in Lemmas 2.1 and 2.2, below.

We will use the customary notation $C(K)$ for the space of continuous,
real-valued functions on the compact set K in R^{n}; we denote the uniform norm by $\left\|\|_{s}\right.$.

II. Results and Examples

The proof of the following result is essentially given in [2, p. 243].
Lemma 2.1. Let μ be a positive Borel measure on $B, \mu(B)=1$. Then, a necessary and sufficient condition for there to be another such measure vo that

$$
\begin{equation*}
\lim _{s \rightarrow 0+} \int_{B} g(x) d \mu_{s}=\int_{B} g(x) d v, \quad g \in C(B) \tag{2.1}
\end{equation*}
$$

is the existence of the limits

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0+} \int_{B} x_{j}^{k} d \mu_{\varepsilon}, \quad j=1, \ldots, n ; \quad k=0,1, \ldots \tag{2.2}
\end{equation*}
$$

Here $x=\left(x_{1}, \ldots, x_{n}\right) \in R^{n}$.
Lemma 2.2. Let μ and v be positive, nondegenerate Borel measures on B, $\mu(B)=v(B)=1$, satisfying (2.1). Then the norms $\left\|\|_{p, \mu_{i}}\right.$ and $\| \|_{p, v}$ are equivalent on π_{m}, independently of ε in $(0,1]$, for each fixed $m \in Z_{+}$.

Proof. Letting the linear functionals $F_{:}$and F be as in Lemma 2.1 we show the ratio

$$
\|P\|_{p, \mu_{r}}^{p}\|P\|_{p, v}^{p}=F_{\varepsilon}\left(|P|^{p}\right) / F\left(|P|^{p}\right), \quad P \not \equiv 0
$$

is bounded above independently of ε in $(0,1]$ and $P \in \pi_{m}$. The proof for the reciprocal ratio is the same.

If the ratio were not bounded, then there would exist sequences $\varepsilon_{k} \downarrow 0$ and $P_{k} \in \pi_{m},\left\|P_{k}\right\|_{x}=1$, such that $F_{k_{k}}\left(\left|P_{k}\right|^{p}\right) / F\left(\left|P_{k}\right|^{p}\right)>k, k=1,2, \ldots$. However, the compactness of the unit sphere in π_{m} with respect to $\left\|\|_{\text {, }}\right.$ allows us to further assume there is a $P \in \pi_{m},\|P\|_{x}=1$, with $\lim _{k \rightarrow \infty}\left\|P-P_{k}\right\|_{\infty}=0$ and so $\lim _{k \rightarrow \infty}\left\||P|^{p}-\left|P_{k}\right|^{p}\right\|_{\infty}=0$. Since the F_{s} are uniformly bounded, this would mean $\lim _{k \rightarrow \infty} F_{c_{k}}\left(\left|P_{k}\right|^{p}\right) / F\left(\left|P_{k}\right|^{p}\right)=$ $\lim _{k \rightarrow \infty} F_{c_{k}}\left(|P|^{p}\right) / F\left(\left|P_{k}\right|\right)=1$, a contradiction.

The special subspace of $L^{p}(\mu)$ referred to in the first section is

$$
t_{m, \mu}^{p}:=\left\{f \in L^{p}(\mu):\left\|f(\varepsilon \cdot)-T_{m}(\varepsilon \cdot)\right\|_{p, \mu}=o\left(\varepsilon^{m}\right) \text { for some } T_{m} \in \pi_{m}\right\} .
$$

See $[1,3]$. Lemma 2.2, above, implies the polynomial T_{m} corresponding to $f \in t_{m, \mu}^{p}$ is unique, if μ satisfies (2.1).

We now have all the ingredients to prove
Theorem 2.3. Let μ be a positive Borel measure on $B, \mu(B)=1$, for which $\lim _{s \rightarrow 0+} \int_{B} x_{j}^{k} d \mu_{\varepsilon}$ exists, $j=1, \ldots, n: k=0,1, \ldots$ Let v be the measure guaranteed by Lemma 2.1 to satisfy

$$
\begin{equation*}
\lim _{z \rightarrow 0^{+}} \int_{B} g(x) d \mu_{e}=\int_{B} g(x) d v, \quad g \in C(B) \tag{2.3}
\end{equation*}
$$

Suppose that both μ and v are nondegenerate. For $f \in t_{m+1, \mu}^{p}$, set $\phi_{m+1}=T_{m+1}-T_{m}$. Then,

$$
E_{\varepsilon} f=\varepsilon^{-m \cdot 1}\left[f(\varepsilon t)-\left(P_{m \cdot \mu_{\mu}} f(\varepsilon \cdot)\right)(t)\right]
$$

satisfies
(i) $\lim _{\varepsilon \rightarrow 0+}\left\|E_{\varepsilon} f-\left(\phi_{m+1}-P\right)\right\|_{p, \mu_{\varepsilon}}=0$
(ii) $\lim _{n \rightarrow 0+}\left\|E_{c} f\right\|_{p, \mu_{c}}=\left\|\left(\phi_{m+1}-P\right)\right\|_{p, r}$,
where $P=P_{m, v} \phi_{m+1}$.
Proof. To begin, we observe that, by (2.3), (i) implies (ii), and so it is enough to prove (i).

Since $f \in t_{m+1, \mu}^{p}$,

$$
f(\varepsilon t)=T_{m+1}(c t)+c^{m+1} R_{t}(t), \quad|t|<1,
$$

where

$$
\begin{equation*}
\lim _{: \rightarrow 0+}\left\|R_{r}\right\|_{p, \mu_{r}}=0 \tag{2.4}
\end{equation*}
$$

Set

$$
q_{\varepsilon}(t):=\varepsilon^{m-1}\left[\left(P_{m, q_{\varepsilon}} f(\varepsilon \cdot)\right)(t)-T_{m}(\varepsilon t)\right]
$$

Then, $q_{e}=P_{m, p_{s}}\left(h_{e}\right), h_{\varepsilon}=\phi_{m+1}+R_{\varepsilon}$, with $\left\|q_{\varepsilon}\right\|_{p, v}$ uniformly bounded, in view of (2.4) and Lemma 2.2. Also, assertion (i) can be written

$$
\begin{equation*}
\lim _{x \rightarrow 0+}\left\|P-q_{s}\right\|_{p, \mu_{k}}=0 \tag{2.5}
\end{equation*}
$$

Now, if (2.5) were not true, the compactness of the unit sphere in π_{m} and Lemma 2.2 would ensure the existence of a sequence $\varepsilon_{k} \downarrow 0$ and $q \in \pi_{m}$, $q \neq P$, such that

$$
\lim _{k \rightarrow \infty}\left\|q-q_{\varepsilon_{k}}\right\|_{p, k_{r_{k}}}=0
$$

and hence

$$
\begin{aligned}
\lim _{k \rightarrow,}\left\|h_{k_{k}}-P\right\|_{p, \mu_{k, t}} & =\mid \phi_{m+1}-P\left\|_{p . v}<\right\| \phi_{m+1}-q \|_{p, v} \\
& =\lim _{k \rightarrow,}\left\|h_{k_{k}, k}-q_{t, k}\right\|_{p, \mu_{t k}} .
\end{aligned}
$$

This is incompatible, for sufficiently large k, with the minimality of $q_{t_{k}}$.
Examples 2.4. (1) The measures μ considered in [4] are of the form $d \mu(x)=w(|x|) d x$, where

$$
\lim _{\varepsilon \rightarrow 0+} \omega_{n}^{-1} \varepsilon \varepsilon^{(\beta+n} \int_{|x| \leqslant \varepsilon} w(|x|) d x=\lim _{\varepsilon \rightarrow 0^{+}} \varepsilon^{(\beta+n)} \int_{0}^{n} r^{\prime \prime} \quad w(r) d r:=A>0
$$

exists for some $\beta>-n$, and ω_{n} denotes the surface area of B. Thus, essentially, $w(|x|)$ behaves like $|x|^{\beta}$. Whe claim that such μ satisfy (2.1) and, further, the associated measure v is given by $d v(x)=\tilde{\omega}(|x|) d x$, $\tilde{w}(|x|)=\omega_{n}{ }^{1}(\beta+n)|x|^{\beta}$. To prove this it suffices to show that

$$
\begin{aligned}
\lim _{x \rightarrow 0+} \int_{B} x_{j}^{k} d \mu_{i}(x) & =\lim _{n \rightarrow 0+} \frac{\varepsilon^{n} \int_{|x| \leqslant 1} x_{j}^{k} w(\varepsilon|x|) d x}{\int_{|x| \leqslant n} w(|x|) d x} \\
& =\lim _{x \rightarrow 0+} \frac{c_{j} \varepsilon^{k} \int_{0}^{k} r^{k+n}{ }^{1} w(r) d r}{\int_{0}^{k} r^{n}{ }^{1} w(r) d r} \\
& =\frac{\beta+n}{\beta+n+k} c_{j}, \quad j=1, \ldots, n,
\end{aligned}
$$

where c_{j} is independent of ε; indeed, it is enough to show that

$$
\lim _{x \rightarrow 0+} \varepsilon^{(\beta+n+k)} \int_{0}^{\varepsilon} r^{k+n} \quad{ }^{1} w(r) d r=\frac{\beta+n}{\beta+n+k} A, \quad k=0,1, \ldots
$$

But, integrating by parts, we find

$$
\begin{aligned}
\varepsilon^{(\beta+n+k)} \int_{0}^{\varepsilon} r^{k+n-1} w(r) d r= & \varepsilon^{(\beta+n)} \int_{0}^{\varepsilon} r^{n}{ }^{1} w(r) d r \\
& -k \varepsilon^{(\beta+n+k)} \int_{0}^{\varepsilon} r^{k}{ }^{1} W(r) d r,
\end{aligned}
$$

with $W(r):=\int_{0}^{r} s^{n}{ }^{1} w(s) d s$. Finally, l'Hôpital's rule yields

$$
\lim _{n \rightarrow(0+} e^{(\beta+n+k)} \int_{0}^{k} r^{k} \quad W(r) d r=\frac{A}{\beta+n+k}
$$

(2) A nonnegative function, ϕ, defined on (0,1] is said to be slowly varying near 0 , in the sense of Hardy and Rogosinski, if to each $\delta>0$, there corresponds $t_{0}=t_{0}(\delta)$ in (0,1$]$ such that $t^{\dot{s}} \phi(t)$ is nondecreasing and $t{ }^{\circ} \phi(t)$ is nonincreasing on $\left(0, t_{0}\right)$. Given μ with $d \mu(x)=c|x|^{\beta} \phi(|x|) d x$, where $\beta>-n$, and c is a normalizing constant, standard arguments show v satisfies $d v(x)=\omega_{n}^{\prime}(\beta+n)|x|^{\beta} d x$. See [6, p. 186].
(3) Measures μ of the form $d \mu(x)=c\left(\prod_{i-1}^{v}\left|x_{i}\right|^{\beta_{1}}\right) d x, x=\left(x_{1}, \ldots, x_{n}\right)$, $\beta_{i}>-1$, give rise to $v=\mu$, since

$$
\mu(\varepsilon E)=c \int_{e E}\left(\prod_{i}^{n}\left|x_{i}\right|^{\beta_{i}}\right) d x=\varepsilon^{n+\sum \beta_{c}} c \int_{E}\left(\prod_{i=1}^{n}\left|y_{i}\right|^{\beta_{i}}\right) d y
$$

from which it follows that $\mu_{\varepsilon}(E)=\mu(E)$.
(4) When $d \mu(x)=c\left(\prod_{i=1}^{n}\left|x_{i}\right|^{\beta} \phi_{i}\left(x_{i}\right)\right) d x, \beta_{i}>-1, \phi_{i}$ slowly varying, then v satisfies $d v(x)=k \prod_{i-1}^{n}\left|x_{i}\right|^{\beta_{i}} d x$.
(5) Measures μ that have either the form $d \mu(x)=c|x|{ }^{n}[\log e /|x|]^{\beta}$, $\beta<-n$, or the form $d \mu(x)=c e^{-1 /|x|} d x$, give rise to degenerate v, in fact, to the Dirac delta measure and the singular normalized surface measure on the unit sphere, respectively.

Acknowledgments

We thank the referee for providing the outline of the proof of Theorem 2.3 as an alternative to the proof of Theorem 1 in [4]. Both authors were supported in part by operating grants from NSERC.

References

1. A. P. Calderón and A. Zygmund, Local properties of solutions of elliptic partial differential equations, Studia Math. 20 (1961), 171-225.
2. W. Feller, "An Introduction to Probability Theory and Its Applications," Vol. II, Wiley, New York.
3. G. Freud, Eine Ungleichung für Tschebyscheffsche Approximationspolynome, Acta Sci. Math. (Szeged) 19 (1958), 162-164.
4. R. A. Macías and F. Zó, Weighted best local L^{r} approximation, J. Approx. Theory 42 (1984), 181-192.
5. H. Maehly and Ch. Witzgall, Tschebyscheff-Approximationen in kleinen Intervallen I, Numer. Math. 1 (1960), 142-150.
6. A. Zygmund. "Trigonometric Series," Vol. I, Cambridge Univ. Press, London/New York.
