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1. INTRODUCTION

The purpose of this note is to generalize a recent result of Macias and
Z6 in [4] concerning weighted best local U' approximation. Results of this
type have their origin in the work of Freud [3] and Maehly and
Witzgall [5].

We consider a positive Borel measure, fl, on the unit ball, B, in R", with
tl(B) = 1. This measure is required to be nondegenerate in the sense that it
is not supported in the zero set of a nontrivial polynomial and that
p(r;Bj > 0 for all r; in (0, 1] where eE:= {y E R": y = DX, X E E}. The dilates
of fl are the measures, fl" 0 < f, ~ I, given at the Borel set E c B by p,( E) =

tl (eE)/fi (eB).

As usual, lJ'(p), 1< P < cr.), is the chss of all measurable functions,./: on
B such that IlfllP-!':= Un If(x)11' dfl] II' < x. Given IE U'(fl), we denote
by P",.jJthe unique element of 7["" the class of real polynomials of degree at
most m, satisfying III- p",./JIII'./l = infPF IT m III PII f'II' Restricting attention
to a special class of measures dp = Il'( Ixi )dx (see Example 2.4( I), below),
Macias and Z6 studied the limiting behaviour, as D ---+ 0+, of

(EJ)(l):= D '" J U(Dt) - (Pm./"I(D' ))(Dt)], ItI~ 1,

when I belongs to a certain subspace of lJ'(p). We observe that
(Pm./"J(e· ))(t) P",(a), where P'" is the best approximation out of 7f m to
I in £1' with respect to the measure fl(·)/p(BB) on B. Our main result,
Theorem 2.3, shows E,f behaves the same way for a much larger class of
tl. The key to proving this is in finding a substitute for the weight Ii'
associated with the given weight H' in [4], as well as for the important
Lemma I concerning it. This is found in the measure v associated with the
given measure p, in Lemmas 2.1 and 2.2, below.

We will use the customary notation C(K) for the space of continuous,
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real-valued functions on the compact set K in R"; we denote the uniform

norm by II II,·

II. RESULTS AND EXAMPLES

The proof of the following result is essentially given in [2, p. 243].

LEMMA 2.1. Let p he a positive Borel measure on B, p( B) = I. Then, a
necessary and sujjicient condition f(Jr there to he another such rneasure v so
that

lim r g(x)dp,= I' g(xldv,
I: _0+ oi B ., H

is the existence of the limits

gEC(B) (2.1 )

lim r x~ dp"
/: -0+ "'" B

Here x = (XI' ... , x,,) E R".

j=I, ... ,n; k=O.I, .... (2.2)

LEMMA 2.2. Let p and v he positive, nondegenerate Borel measures on B,
p(B)=v(B)= 1, satisfying (2.1). Then the norms II ,11'.11, and II III'" are
equivalent on 7[11" independently of r; in (0, I]. for each fixed mE Z + •

Proof: Letting the linear functionals F, and F be as in Lemma 2.1 we
show the ratio

is bounded above independently of i: in (0, I] and P E 7[",. The proof for the
reciprocal ratio is the same.

If the ratio were not bounded, then there would exist sequences I'.k to
and Pk E7["" IIPkll I = I, such that F,,(IPkIP)/F(IPkll'»k, k= 1, 2, ....
However, the compactness of the unit sphere in 7[", with respect to II II,
allows us to further assume there is a PE 7["" IIPII f = 1, with
limk~x IIP~Pkllx.=O and so lim k _+ f IIIPII'~IPkIPllf=O. Since the F,
are uniformly bounded, this would mean limk~' F,,(IPkll')/F(IPkIP) =
limk~xc Fq ( IPI 1')/F( IPkl ) = 1, a contradiction.

The special subspace of U'(p) referred to in the first section is
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See [1, 3]. Lemma 2.2, above, implies the polynomi.al T m corresponding to

fE t~'.11 is unique, if I' satisfies (2.1).
We now have all the ingredients to prove

THEOREM 2.3. Let f1 be a positive Borel measure on 13, f1( B) 1, fin'
which lim, ~ 0+ SB x1 dl', exists, j = L ..., n; k = 0, 1, .... Let v be the measure
guaranteed by Lemma 2.1 to satis/)'

lim J' g(x) dill = r g(x) dv,
,f;----+Ot B ~B

gE C(B). (2.3 )

Suppose that both Il and v are nondegenerate. For fE t;" + 1.1" set
<Pm+1 Tm+I-Tm · Then,

E,/= e' m I [fIef) (Pm.!,j(e. ))(t)J

satisfies

(i) lim,.~o+ IIE,J-(<Pm+1 P)flp.I"=O

Oi) lim, ~()+ IIEJIIM, = 1!(<Pm+ I P)\lpv,

where PPm. ,.<Pm + J'

Pro()j: To begin, we observe that, by (2.3), (i) implies (ii), and so it is
enough to prove (i).

Since fE t;;, + L!,'

where

Set

fIef) = Till + I(st) + ;;m+ 1R,(t),

lim IfR,llp.I', = O.
/: ----. 0+

It I < 1,

(2.4 )

Then, qr,=Pm'I'Jh,),hc=<Pm+l+R" with Ilq,ll p ., uniformly bounded, in
view of (2.4) and Lemma 2.2. Also, assertion (i) can be written

lim liP q,lI p ,I"=O.
J-:-O+

(2.5 )

Now, if (2.5) were not true, the compactness of the unit sphere im 77: m and
Lemma 2.2 would ensure the existence of a sequence tk 10 and q E 77:""
q =F P, such that
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and hence
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lim
k-. f

PilI" < Ilifilll' I -- if I"

This is incompatible, for sufficiently large k, with the minimality of if,,,

EXAMPLES 2.4. ( 1) The measures Jl considered in [4] are of the form
dJl(x)=w(lxl)dx, where

lim Willi: 1/1+ 11 11' 11'(lxl)dx= lim I:
1:_0+ "I\"I I: :: .() +

"(/1 +- 1/) I rtl

"0

Iw(r)dr:=A>O,

exists for some 13> - n, and WII denotes the surface area of B. Thus,
essentially, w(lxl) behaves like Ixl /i Wle claim that such {I satisfy (2.1)
and, further, the associated measure \' is given by d\'( x) = It'( ) dx,

It'( Ixl) = ()) II '(j1 + n) Ixl Ii To prove this it suffices to show that

, I' k. . 1:"JI\I",l x : w(l:l x l)dx
lIm x/ dJl,(x) = lIm
,~O+"H ,-o~ .L\I,lI'(lxl)dx

('I:
= lim 1

I .()t

k J~) r k + II '1I'( 1') dr

I', I'" 'lI'(r) dr
,0

fl+1I
= ('

13+n+k I'
i = I, ... , II,

where ('I is independent of I:; indeed, it is enough to show that

-I 11 + n
lim I: 1/1+II+k) I r k + 1I ')l'(r)dr= A,
,~o~ '0 fl+n+k

But, integrating by parts, we find

k = 0, I, ....

I: 1/1+II+k) fi r k + 1I 'w(r) dr= I:

°
I/Itllll"rll Iw(r)dr

'0

"

---kl: I/I+ lltkl l r k lW(r) dr,
'0

with W(r):= S;) .1'/1 IW(S) ds, Finally, I'H6pital's rule yields

",1
lim c 1/1+II+ kl l r k IW(r)dr= . ,

I~IJ+ .() !l+lI+k



BEST LOCAL APPROXIMATIONS IN ["(fl) 281

(2) A nonnegative function, ¢, defined on (0, I] is said to be slowly
varying near 0, in the sense of Hardy and Rogosinski, if to each ci > 0, there
corresponds ta = ta(b) in (0, I] such that t ,i¢(t) is nondecreasing and
t ,i¢(t) is nonincreasing on (0, to). Given fl with dfl(X)=clxill¢(lxl)dx,
where p> -n, and e is a normalizing constant, standard arguments show
\' satisfies dv(x) = w

II
I(fI + n) Ixl l! dx. See [6, p. 186].

(3) Measures {I of the form dfl(X) = C(fT~ I Ix,III,) dx, x = (XI' ... , xnl,
II, > -I, give rise to \' = fl, since

{I(DE) = er.' (fI Ix,l Ii,) dx = DII
+ I: fi'e J, ('fI IyYli) dl'"

d. i I f. I 1

from which it follows that fl,(E) = filE).

(4) When dfl(x)=e(fT'~llxYi¢,(x,))dx,fJ,> -1, ¢, slowly vary
ing, then \' satisfies dl'(x)=kfT'_llx,IIJidx.

(5) Measures fi that have either the form dfl(X) = C Ixl II [log e/lxl ]Ii,
II < - n, or the form dfl(X) = ce - lil,l dx, give rise to degenerate v, in fact, to
the Dirac delta measure and the singular normalized surface measure on
the unit sphere, respectively.
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